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Introduction

EVERAL previous studies [1-4] have reported on the

development of linear differential equations for modeling J,-
perturbed relative motion of satellites with respect to a circular orbit.
Such equations allow for a direct simulation of relative motion and
are useful for parametric studies. Moreover, linear differential
equations with periodic coefficients are amenable to mathematical
analysis by Floquet theory and the application of tailored control
methods. Relative motion equations typically involve the orbital
radius of the reference satellite (often designated as the chief) and the
angular velocities of the chief-fixed rotating reference frame; these
are functions of a set of orbital elements. The relative motion model
developed by Vadali et al. [1] accounts for the secular perturbations
of the elements, but not their short-period variations. This model also
neglects the coupling terms between the out-of-plane and in-plane
equations, leading to a loss of precision. Ross [2] appends the
differential J, accelerations as forcing functions to the Clohessey—
Wiltshire equations, but the perturbations to the two-body mean
motion and the angular rates of the reference frame are not accounted
for. Schweigart and Sedwick [3] include the orbit-averaged absolute
and differential perturbations; however, they do not treat the short-
period effects in a comprehensive manner. 1zzo et al. [4] an ad hoc
approach for modeling the short-period effects. Their model is based
on approximations to the angular momentum and radius of the
chief’s orbit, derived by assuming a constant reference orbit
inclination and the use of the two-body mean motion instead of the
perturbed mean motion; furthermore, their model requires the
specifications of the initial osculating elements of the chief. A
consistent incorporation of the mean elements and their short-period
variations into the relative motion equations is the subject of this
paper.

Gim and Alfriend [5] provide a state transition matrix (STM) for
propagating the relative motion states (relative position and velocity
vectors) for elliptic reference orbits in a curvilinear coordinate
system. Underlying their development are the STMs for propagating
the differential nonsingular as well as the differential equinoctial
orbital elements. However, the expressions for building the STMs are
complicated due to the presence of the short- and long-period effects
of J,. There are no long-period effects of the J, perturbation on the
elements of a mean circular orbit. The long-period terms for elliptic
orbits can be ignored for simplifying the STM, especially for
prediction times less than the perigee rotation period. Hamel and
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Lafontaine [6] consider such an alternative, but the fundamental
matrix derived suffers from a singularity for zero mean eccentricity of
the reference orbit. Born et al. [7] derive short-period corrections to
the mean nonsingular orbital elements for near-circular orbits using
the principle of averaging. Sengupta et al. [8] also derive such cor-
rections for elliptic orbits by the application of the Brouwer theory
[9]. There exist minor differences between the expressions for the
short-period corrections, for the special case of the mean circular
orbit, derived in [7], and the corresponding results of [8].

In this paper, a set of linearized relative motion equations are
derived with respect to a mean circular reference orbit by using
expressions for the secular drift rates and the short-period variations
of the chief’s orbital elements as given in [8]. The structure of the
model developed in this paper is the same as that of [4], the dif-
ferences are in the short-period approximations used. The accuracy
of the developed model is evaluated by comparison with the data
obtained from simulating the nonlinear equations of motion of the
individual satellites and computing the relative motion therefrom.
The secular in-track linearization error of the model is shown to be
consistent with the estimate given in Vaddi et al. [10] for unperturbed
relative motion, rendering the J,-induced errors to be predominantly
periodic in nature.

Development of the Model

A mean circular reference orbit and a rotating reference frame are
chosen to express the relative motion equations in the phase space
comprising the relative position and velocity vectors. The relative
position vector of a deputy satellite defined in the chief-fixed rotating
coordinate system is denoted by

sr=[x y zI M
where x, y, and 7 are, respectively, the radial, in-track, and cross-track
position coordinates. The angular velocity vector of the rotating
frame is

® = [a)x wy, w; ]T 2)
with
w, = Qg sin iy sin 6 + iy cos 6, (3a)
w, = QO sin iy cos By — iy sin 6, (3b)
W, = QO cos iy + 90 3¢)

where € is the longitude of the ascending node, 6, is the argument of
latitude, and i is the inclination of the reference orbit. Equations (3a—
3c) are written in terms of the osculating elements.

The nonlinear equations of perturbed relative motion [4] are

OF = 20 X 0r —@ X (@ X 0r) —@ X 8r + VF o + VF,; (4)

where VF ,p is the gravity gradient acceleration due to the two-body
gravity field and VF, is that due to the J, potential. The two-body

gravity gradient acceleration, expressed in the rotating reference
frame, is [10]
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where p is the gravitational parameter and r, is the radius of the
chief’s orbit. Equation (5) can be linearized about r,, to obtain

" —2x
VFEpp~—=| (0
O

The linearized J, differential acceleration vector is [4]

1 — 3sin?iysin®6,

sin?i, sin 26,
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Linear Model

The relative motion equations are assembled in a matrix form by
substituting the relevant expressions derived previously into Eq. (4),
including the linear approximation to VF,; given by Eq. (6).
Although the structure of the model presented is the same as that
given in [4], the expressions for the orbital radius and angular
velocities used are as derived in this paper. The linear model is

sin 2i, sin 6,

VF,, =G| sin’igsin20,  —i+ sin?iy(lsin’6y —1 —1sin 2ij cos 6, Sr 7)
sin 2i, sin 6, —1sin 2i; cos 6, —3 + sin%iy(3sin?6y + 1)
where a, is the mean semimajor axis, G = 6n3J,(a,/ry)*, and n, is 0O 0 0 1 0 0
the two-body mean motion, based on a. 0O 0 0 0 1 0
sr 0o 0 0 0 0 1 |[ér
. T = : )
Short-Period Effects sr ag ap am 0 2w, 0 []dr
. . . as; as, as3; —2w, 0 2w,
The relationships between the osculating and mean elements for B
mean circular orbits can be obtained from the detailed expressions agr A a0 —20, 0
given in [5]. These expressions are also available in [8] in a h
convenient form. The relevant variables for the case of circular orbits, where
derived from th iven in [8], ==
erived from those given in [8], are Gy =2 + 2% + G(1 — 3sin?iysin®6y) (12a)
- _ _ 3
ro = do[1 + JE(1 — 3cos?iy) + §sini cos 26,}] (8a) 0
ayp = o, + G(sin2i, sin 20,) (12b)
8o = 60(0) + Byt + LI (1 — Teos?iy) sin 26, (8b)
ayy = —w,, + G(sin 2iy sin 6,) (12¢)
i =i + %J sin 2i, cos Zéo (8c) _ _
as; = —w, + G(sini; sin 26,) (12d)
Qo =00 +S;2t—|—3.lcosf sin 26 8d - -
0 0@ o 0 0 (8d) as, = w2 + w? — ﬁ} + G[—} + sin?iy (sin6, — 1)] (12e)
. - o
where 90 = 90(0) + 001, J= Jz(RE/&O)Z, and
as; = @, — G(Lsin 2i, cos 65) (12f)
Go = no[l -3 - 4cos220)] (9a)
ag = —w,w, + G(sin 2§, sin éo) (12g)
Qo= —3nycos iy (9b) o
gy = —W, — G(i sin 2§, cos 6) ~ 0 (12h)
Substitution of Egs. (8_b_—8_d), (9a), and (9b) into Egs. (3a-3c¢) and , N s 2T s 2F 1 )
the approximation 6, ~ 6, in the evaluation of the trigonometric de3 = Wy — ” + Gl + sin®ig (Gsin*y + )] (120)

functions therein results in the following expressions for the angular
velocities:

w, = 2 sin iy sin b, (10a)
w, =0 (10b)
w, = Qqcos iy + Oy + Lny cos 20,sin’i, (10c)

The mean element approximation is performed by setting Qo = S_ZO,

6y = 6y, and i, = 0in Egs. (3a-3c). Note that the two expressions for
w, given by Egs. (10a) and (3a), with the mean element approx-
imation, differ by a factor of 2. Equation (10b) shows that the
approximations developed in this section satisfy the osculating orbit
condition of Eq. (3b). The short-period correction to the mean w, is
obvious from Eq. (10c¢).

Equations (12) can be simplified further by making several
approximations. For example, it can be shown that ag, = 0to O(J,).
The in-track y motion is sensitive to the term as;, especially for initial
conditions corresponding to a nonzero nodal difference between the
two satellites, §Q2(0) # 0. This shows the existence of a coupling
between cross-track and in-track variables for certain initial
conditions. Another observation is that the terms involving /r3 in
Eq. (12) can be reduced by using a binomial expansion of O(J,).
However, this simplification increases the propagation errors over
the long run, leading to the conclusion that, where possible, terms of
O(J3) and higher should be retained.

Numerical Simulations

The reference orbit selected for the numerical simulations has the
following initial mean nonsingular orbital elements:
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d, = 7100 km, 6, =0, ip = 70 deg

q10=0, G =0, 5_20 =45deg

The deputy is set up in a projected circular orbit (PCO) in the
examples to follow. The initial conditions for setting up such a
relative orbit, parameterized by p, the radius of the PCO, and «, the
initial phase angle, are obtained from [11,12]. For model verification,
nonlinear simulations are performed by integrating the equations of
motion of the two satellites in the earth-centered-inertial (ECI) frame
and the nonlinear relative motion results are obtained from the
transformations given in [13]. Several numerical examples are
presented next.

Case 1. The following initial conditions on the state variables are
obtained for a PCO with p = 0.5 km and ¢, = O:

or(0)=
[—0.000288947081 0.500033326318 0.000175666681]” km
§r(0)=
[0.000263388377 0.000000272412 0.000527371445]" km/s

The corresponding initial conditions of the chief and deputy in the
ECI frame are

ry =[5023.558528005 5023.558528005 0] km
Vo=
[—1.810956397226 1.810956397226 7.041120373157]" km/s
r; =[5023.437579954 5023.679067423 0.469973680]” km
v =

[—1.810792589537 1.810419297938 7.041300610075]" km/s

The errors in the three components of dr between the linear and the
nonlinear simulation results are shown in Fig. 1. The radial and cross-
track errors are bounded and oscillatory, unlike the in-track error. The
in-track drift rate estimated from Fig. 1 is —11 m in 15 orbits of the
chief.

Under the two-body assumption (J, = 0), the in-track drift per
orbit due to linearization error for a PCO is [10]

9mp

2
y=-7 (2 + cos2ay) (13)

ao

The drift predicted by Eq. (13) for the data of this example is
—11.2 m in 15 orbits. Hence, the in-track drift seen from Fig. 1 is
predominantly due to the linearization of the two-body relative
gravitational acceleration.
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Fig. 1 Errors between the linear and nonlinear models (case 1,
p =0.5 km, oy =0deg).
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Case 2. The initial conditions for this example are for p = 0.5 km
and oy = 90 deg:
or(0)=
[0.250014418391 0.000198338483 0.500288022195]" km
sr(0)=
[—0.000000124335 —0.000527557529 —0.000000019840]” km/s

The corresponding initial conditions of the deputy in the ECI
frame are

r; =[5024.067715322 5023.402914470 0.171195964]" km
V=

[—1.810892863426 1.810892391776 7.040872374521]" km/s

Figure 2 shows that, except for a change in the in-track drift rate, the
error profiles are quite similar to those seen for the previous example.
The radial error is predominantly oscillatory in nature, with a small
superimposed linear growth rate. The in-track drift rate estimated
from Fig. 2 is —3.5 min 15 orbits, compared to —3.73 m during the
same period, predicted by Eq. (13).

015 5 10 15
2 . .
€
T o 1
S
i —2,\—\,\’\’\/\’»\/\;
>
40 5 10 15
0.1 . .

|
o
e

0 5 10 15
Time (orbits)

Fig. 2 Errors between the linear and nonlinear models (case 2,
p =0.5 km, ey =90deg).
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Fig. 3 Errors between the linear and nonlinear models (case 3,
p=1km, oy, =0deg).
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Cases 3 and 4. A PCO with p =1 km is considered to show the
effects of the size of the relative orbit on the model errors. Figures 3
and 4, respectively, show the errors between the linear and nonlinear
simulations for oy = 0 deg and oy = 90 deg. The errors increase with
the size of the orbit. The amplitudes of the radial and cross-track
errors, as well as the in-track growth rate show quadratic relation-
ships with p for oy = 0 deg, as is to be expected from Eq. (13). The
quadratic relationships of the error amplitudes with p are not well
satisfied for oty = 90 deg, showing a more dominant J, effect for this
case.

Cases 5 and 6. The extent of the errors, solely due to the
approximation of J,, can be ascertained by replacing the linear two-
body differential gravitational acceleration of Eq. (6) by the differ-
ence of the two-body accelerations for the deputy and the chief,
obtained from Eq. (5). The effect of this modification is evaluated for
the 1 km PCO considered previously. Figure 5 shows the errors in the
states with respect to the nonlinear simulation results for oty = 0 deg
and Fig. 6 shows the same for oty = 90 deg. The in-track error due to
the approximation of the J, effect is more for oy =90deg as
compared to that for oy = 0, corroborating the conclusion drawn
previously. However, the secular effect due to the J, approximation is
very small compared with that due to linearization of the two-body
differential gravitational acceleration.
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Fig. 4 Errors between the linear and nonlinear models (case 4,
p=1km, o, =90deg).
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Fig. 5 Errors between the linear-J,-nonlinear two-body gravitational
acceleration model and nonlinear simulation (case 5, p =1 km,
oy =0deg).
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Fig. 6 Errors between the linear-J,-nonlinear two-body gravitational
acceleration model and nonlinear simulation (case 6, p =1 km,
oy =90deg).

Conclusions

A consistent linear model for J,-perturbed relative motion in the
vicinity of a mean circular orbit has been developed. It accounts for
the secular as well as short-period perturbation effects on the mean
elements. The fidelity of the model has been verified on several test
cases and by comparisons of the in-track errors with those associated
with linearization of the two-body gravitational field. Results show
that the primary source of error is due to linearization of the two-body
gravitational field; the J, approximation is a secondary error source.
The developed model can be used for rapid mission analysis and the
design and evaluations of formation control strategies.
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